On the degree and half-degree principle for symmetric polynomials

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on quantum algorithms and the minimal degree of ε-error polynomials for symmetric functions

The degrees of polynomials representing or approximating Boolean functions are a prominent tool in various branches of complexity theory. Sherstov [She08a] recently characterized the minimal degree degε(f) among all polynomials (over R) that approximate a symmetric function f : {0, 1}n → {0, 1} up to worst-case error ε: degε(f) = Θ̃ ( deg1/3(f) + √ n log(1/ε) ) . In this note we show how a tight...

متن کامل

A characterization of the symmetric group of prime degree

Let $G$ be a finite group and $Gamma(G)$ the prime graph of $G$‎. ‎Recently people have been using prime graphs to study simple groups‎. ‎Naturally we pose a question‎: ‎can we use prime graphs to study almost‎ ‎simple groups or non-simple groups? In this paper some results in‎ ‎this respect are obtained and as follows‎: ‎$Gcong S_p$ if and only‎ ‎if $|G|=|S_p|$ and $Gamma(G)=Gamma(S_p)$‎, ‎whe...

متن کامل

On the degree of local permutation polynomials∗

Every Latin square of prime or prime power order s corresponds to a polynomial in 2 variables over the finite field on s elements, called the local permutation polynomial. What characterizes this polynomial is that its restrictions to one variable are permutations. We discuss the general form of local permutation polynomials and prove that their total degree is at most 2s−4, and that this bound...

متن کامل

On the resultant of degree-deficient polynomials

The resultant is an algebraic expression, computable in a finite number of arithmetic operations from the coefficients of two univariate polynomials, that vanishes if, and only if, the two polynomials have common zeros. The paper considers formal resultant for degree-deficient polynomials (polynomials whose actual degree is lower than their assumed degree). Some key properties of the resultant ...

متن کامل

Degree Bounds on Polynomials and Relativization Theory

We demonstrate the applicability of the polynomial degree bound technique to notions such as the nonexistence of Turing-hard sets in some relativized world, (non)uniform gap-definability, and relativized separations. This way, we settle certain open questions of Hemaspaandra, Ramachandran & Zimand [HRZ95] and Fenner, Fortnow & Kurtz [FFK94], extend results of Hemaspaandra, Jain & Vereshchagin [...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2012

ISSN: 0022-4049

DOI: 10.1016/j.jpaa.2011.08.012